Skip to main content
Ctrl+K
Logo image

Contents

  • Introduction
    • Math Basics
    • Statistics basics
      • Boxplots
      • Outliers
      • Parametric tests or models
    • Machine Learning Basics
      • Types of ML systems
      • Machine Learning workflow
  • Data preparation
    • Quality of a dataset
    • Data validation
    • Feature engineering
      • RDKit
      • MACCS fingerprints
      • Morgan ECFP fingerprints
      • Mordred
      • Measure molecular similarity
    • Feature selection
    • Train, validation, and test sets
    • Scaling
  • Machine Learning models
    • Linear models
      • Linear regression
    • ML Models
    • k-Nearest Neighbors
    • Decision Tree
    • Gradient Boosting
    • Hyperparameters - Gradient Boosting
  • Model evaluation
    • Model evaluation
    • Performance metrics
    • Train and cross validation
    • y-Randomization
    • Partial dependance plots
    • SHAP (SHapley Additive exPlanations)
  • Scikit-Learn
    • Pipelines
    • Saving Scikit-learn model for reuse

Resources

  • Scientific articles
  • Reading material
  • Python ML tools and packages
  • Show source
  • Suggest edit
  • Open issue
  • .md

Model evaluation

Model evaluation#

This section covers techniques and methods to evaluate model performance.

  • Model evaluation
    • Model metrics
      • R-squared and Adjusted R-squared
      • The F-test
      • RMSE
      • Q-squared
    • sklearn metrics for regression problems
    • References
  • Performance metrics
    • Mean Absolute Error (MAE)
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
      • Mean Absolute Error (MAE) vs Root Mean Squared Error (RMSE)
    • R-squared (R2)
    • References
  • Train and cross validation
    • References
  • y-Randomization
    • References
  • Partial dependance plots
    • Implementarion in scikit-learn
    • References
  • SHAP (SHapley Additive exPlanations)
    • How SHAP works
    • Applications of SHAP
    • Implementation
    • References

previous

Hyperparameters - Gradient Boosting

next

Model evaluation

By José Aniceto

© Copyright 2023, José Aniceto.